Знакопеременные ряды признак лейбница примеры. Знакопеременные ряды. Абсолютная и условная сходимость. Признак Лейбница. Абсолютная и условная сходимость ряда

Определение 6.1 Числовой ряд, содержащий бесконечное множество положительных и бесконечное множество отрицательных членов, называется знакопеременным. Частным случаем знакопеременного ряда является знакочередующийся ряд, то есть такой ряд, в котором последовательные члены имеют противоположные знаки.

Признак Лейбница

Для знакочередующихся рядом действует достаточный признак сходимости Лейбница.

Пусть {an} является числовой последовательностью, такой, что

1. an+1 < an ;

Тогда знакочередующиеся ряды и сходятся.

Абсолютная и условная сходимость

Определение 6.2 Ряд называется абсолютно сходящимся, если ряд также сходится. Если ряд сходится абсолютно, то он является сходящимся (в обычном смысле). Обратное утверждение неверно.

Ряд называется условно сходящимся, если сам он сходится, а ряд, составленный из модулей его членов, расходится.

Применим достаточный признак Лейбница для знакочередующихся рядов. Получаем

поскольку. Следовательно, данный ряд сходится.

Исследовать на сходимость ряд.

Попробуем применить признак Лейбница:

Видно, что модуль общего члена не стремится к нулю при n > ?. Поэтому данный ряд расходится

Применяя признак Даламбера к ряду, составленному из модулей соответствующих членов, находим

Следовательно, данный ряд сходится абсолютно.

Определить, является ли ряд абсолютно сходящимся, условно сходящимся или расходящимся?

Сначала воспользуемся признаком Лейбница и найдем предел. Вычислим этот предел по правилу Лопиталя:

Таким образом, исходный ряд расходится.

Исследовать на сходимость ряд

Общий член данного ряда равен. Применим признак Даламбера к ряду, составленному из модулей:

Следовательно. исходный ряд сходится абсолютно.

Исследовать, является ли ряд абсолютно сходящимся, условно сходящимся или расходящимся?

Применяя признак Лейбница, видим, что ряд является сходящимся:

Рассмотрим теперь сходимость ряда, составленного из модулей соответствующих членов. Используя интегральный признак сходимости, получаем

Следовательно исходный ряд сходится условно.

Определить, является ли ряд абсолютно сходящимся, условно сходящимся или расходящимся?

Сначала применим признак Лейбница:

Следовательно, данный ряд сходится. Выясним, является ли эта сходимость абсолютной или условной. Воспользуемся предельным признаком сравнения и сравним соответствующий ряд из модулей с расходящимся гармоническим рядом:


Поскольку ряд, составленный из модулей, расходится, то исходный знакочередующийся ряд является условно сходящимся.

1. Ряды с положительными членами. Признаки сходимости

Определить сходимость ряда (1.1) и найти его сумму в случае сходимости непосредственно по определению 1.1 как предела последовательности частичных сумм, весьма затруднительно. Поэтому существуют достаточные признаки определения сходится ряд или расходится. В случае его сходимости приближенным значением его суммы с любой степенью точности может служить сумма соответствующего числа первых n членов ряда.

Здесь будем рассматривать ряды (1.1) с положительными (неотрицательными) членами, т. е. ряды, для которых Такие ряды будем называть положительными рядами.

Теорема 3.1. (признак сравнения)

Пусть даны два положительных ряда

и выполняются условия для всех n=1,2,…

Тогда: 1) из сходимости ряда (3.2) следует сходимость ряда (3.1);

2) из расходимости ряда (3.1) следует расходимость ряда (3.2).

Доказательство. 1. Пусть ряд (3.2) сходится и его сумма равна В. Последовательность частичных сумм ряда (3.1) является неубывающей ограниченной сверху числом В, т. е.

Тогда в силу свойств таких последовательностей следует, что она имеет конечный предел, т. е. ряд (3.1) сходится.

2. Пусть ряд (3.1) расходится. Тогда, если ряд (3.2) сходится, то в силу доказанного выше пункта 1 сходился бы и исходный ряд, что противоречит нашему условию. Следовательно ряд (3.2) также расходится.

Этот признак удобно применять к определению сходимости рядов, сравнивая их с рядами, сходимость которых уже известна.

Пример 3.1. Исследовать на сходимость ряд

Члены ряда положительны и меньше соответствующих членов сходящегося ряда геометрической прогрессии

т. к. , n=1,2,…

Следовательно, по признаку сравнения исходный ряд также сходится.

Пример 3.2. Исследовать на сходимость ряд

Члены данного ряда положительны и больше соответствующих членов расходящегося гармонического ряда

Следовательно, по признаку сравнения исходный ряд расходится.

Теорема 3.2. (Предельный признак Даламбера).

Тогда: 1) при q < 1 ряд (1.1) сходится;

  • 2) при q > 1 ряд (1.1) расходится;

Замечание: Ряд (1.1) будет расходиться и в том случае, когда

Пример 3.3. Исследовать на сходимость ряд

Применим предельный признак Даламбера.

В нашем случае.

Пример 3.4. Исследовать на сходимость ряд

Следовательно, исходный ряд сходится.

Пример 3.5. Исследовать на сходимость ряд

Применим предельный признак Даламбера:

Следовательно, исходный ряд расходится.

Замечание. Применение предельного признака Даламбера к гармоническому ряду не дает ответа о сходимости этого ряда, т. к. для этого ряда

Теорема 3.3. (Предельный признак Коши Коши Огюстен Луи (1789 - 1857), французский математик.).

Пусть члены положительного ряда (1.1) таковы, что существует предел

Тогда: 1) при q < 1 ряд (1.1) сходится;

  • 2) при q > 1 ряд (1.1) расходится;
  • 3) при q = 1 о сходимости ряда (1.1) ничего сказать нельзя, необходимы дополнительные исследования.

Пример 3.6. Исследовать на сходимость ряд

Применим предельный признак Коши:

Следовательно, исходный ряд сходится.

Теорема 3.4. (Интегральный признак Коши).

Пусть функция f(x) непрерывная неотрицательная невозрастающая функция на промежутке

Тогда ряд и несобственный интеграл сходятся или расходятся одновременно.

Пример 3.7. Исследовать на сходимость гармонический ряд

Применим интегральный признак Коши.

В нашем случае функция удовлетворяет условию теоремы 3.4. Исследуем на сходимость несобственный интеграл

Несобственный интеграл расходится, следовательно, исходный гармонический ряд расходится также.

Пример 3.8. Исследовать на сходимость обобщенный гармонический ряд

Функция удовлетворяет условию теоремы 3.4.

Исследуем на сходимость несобственный интеграл

Рассмотрим следующие случаи:

  • 1) пусть Тогда обобщенный гармонический ряд есть гармонический ряд, который расходится, как показано в примере 3.7.
  • 2) пусть Тогда

Несобственный интеграл расходится, и, следовательно, ряд расходится;

3) пусть Тогда

Несобственный интеграл сходится, и, следовательно, ряд сходится.

Окончательно имеем

Замечания. 1. Обобщенный гармонический ряд будет расходиться при, т. к. в этом случае не выполняется необходимый признак сходимости: общий член ряда не стремится к нулю.

2. Обобщенный гармонический ряд удобно использовать при применении признака сравнения.

Пример 3.9. Исследовать на сходимость ряд

Члены ряда положительны и меньше соответствующих членов сходящегося обобщенного гармонического ряда

т. к. и параметр

Следовательно, исходный ряд сходится (по признаку сравнения).

Перейдем к рассмотрению рядов, члены которых могут быть как положительными, так и отрицательными.

Числовой ряд, содержащий бесконечное множество положительных и бесконечное множество отрицательных членов, называется знакопеременным.

Абсолютная и условная сходимость

Ряд называется абсолютно сходящимся, если ряд также сходится.

Если ряд сходится абсолютно, то он является сходящимся (в обычном смысле). Обратное утверждение неверно.

Ряд называется условно сходящимся, если сам он сходится, а ряд, составленный из модулей его членов, расходится.

Исследовать на сходимость ряд .

Применим достаточный признак Лейбница для знакочередующихся рядов. Получаем

поскольку . Следовательно, данный ряд сходится.

38. Знакочередующиеся ряды. Признак Лейбница.

Частным случаем знакопеременного ряда является знакочередующийся ряд, то есть такой ряд, в котором последовательные члены имеют противоположные знаки.

Признак Лейбница

Для знакочередующихся рядом действует достаточный признак сходимости Лейбница.

Пусть {an} является числовой последовательностью, такой, что

1. an+1 < an для всех n;

Тогда знакочередующиеся ряды исходятся.

39. Функциональные ряды. Степенные ряды. Радиус сходимости. Интервал сходимости.

Понятие функционального ряда и степенного ряда

Обычный числовой ряд, вспоминаем, состоит из чисел:

Все члены ряда –это ЧИСЛА.

Функциональный же ряд состоит из ФУНКЦИЙ:

В общий член рядапомимо многочленов, факториалов и других подарков непременно входит буковка «икс». Выглядит это, например, так:

Как и числовой ряд, любой функциональный ряд можно расписать в развернутом виде:

Как видите, все члены функционального ряда это функции.

Наиболее популярной разновидностью функционального ряда является степенной ряд.

Определение:

Степенной ряд – это ряд, в общий член которого входят целые положительные степени независимой переменной.

Упрощенно степенной ряд во многих учебниках записывают так: , где– это старая знакомая «начинка» числовых рядов (многочлены, степени, факториалы, зависящие только от «эн»). Простейший пример:

Посмотрим на это разложение и еще раз осмыслим определение: члены степенного ряда содержат «иксы» в целых положительных (натуральных) степенях.

Очень часто степенной ряд можно встретить в следующих «модификациях»: илигде а – константа. Например:

Строго говоря, упрощенные записи степенного ряда,илине совсем корректны. В показателе степени вместо одинокой буквы «эн» может располагаться более сложное выражение, например:

Или такой степенной ряд:

Лишь бы показатели степеней при «иксАх» были натуральными.

Сходимость степенного ряда .

Интервал сходимости, радиус сходимости и область сходимости

Не нужно пугаться такого обилия терминов, они идут «рядом друг с другом» и не представляют особых сложностей для понимания. Лучше выберем какой-нибудь простой подопытный ряд и сразу начнём разбираться.

Прошу любить и жаловать степенной ряд Переменная может принимать любое действительное значение от «минус бесконечности» до «плюс бесконечности». Подставим в общий член ряда несколько произвольных значений «икс»:

Если х=1,то

Если х=-1,то

Если х=3,то

Если х=-0,2, то

Очевидно, что, подставляя в то или иное значение «икс», мы получаем различные числовые ряды. Некоторые числовые ряды будут сходиться, а некоторые расходиться. И наша задача найти множество значений «икс», при котором степенной рядбудет сходиться. Такое множество и называется областью сходимости ряда.

Для любого степенного ряда (временно отвлекаемся от конкретного примера) возможны три случая:

1) Степенной ряд сходится абсолютно на некотором интервале . Иными словами, если мы выбираем любое значение «икс» из интервалаи подставляем его в общий член степенного ряда, то у нас получается абсолютно сходящийся числовой ряд. Такой интервал и называется интервалом сходимости степенного ряда.

Радиус сходимости, если совсем просто, это половина длины интервала сходимости:

Геометрически ситуация выглядит так:

В данном случае, интервал сходимости ряда: радиус сходимости ряда:

До сих пор мы изучали только ряды, все члены которых были положительными . Теперь мы перейдем к рассмотрению рядов, содержащих как положительные, так и отрицательные члены. Такие ряды называются знакопеременными.

В качестве примера знакопеременного ряда приведем ряд

Изучение знакопеременных рядов мы начнем с частного случая, так называемых знакочередующихся рядов, т. е. рядов, в которых за каждым положительным членом следует отрицательный и за каждым отрицательным членом следует положительный.

Обозначая через - абсолютные величины членов ряда и считая, что первый член положителен, знакочередующийся ряд запишем следующим образом:

Для знакочередующихся рядов имеет место достаточный признак сходимости Лейбница.

Признак Лейбница. Если в знакочередующемся ряде (34) абсолютные величины членов убывают:

и общий член ряда стремится к нулю: , то ряд сходится и его сумма не превосходит первого члена ряда.

Доказательство. Рассмотрим частичную сумму четного числа членов ряда

Сгруппируем члены попарно:

Так как по условию абсолютные величины членов ряда убывают, то все разности в скобках положительны и, следовательно, сумма положительна и возрастает при увеличении .

Запишем теперь группируя члены иным образом:

Сумма в квадратных скобках будет также положительной. Поэтому для любого значения . Таким образом, последовательность четных частичных сумм возрастает с увеличением , оставаясь при этом ограниченной. Следовательно, имеет предел

При этом, так как то ясно, что Рассмотрим теперь сумму нечетного числа членов:

При имеем

так как по условию и, следовательно, .

Таким образом, частичные суммы как четного, так и нечетного числа членов имеют общий предел S. Это означает, что вообще , т. е. ряд сходится. При этом, как видно из доказательства, сумма ряда S не превосходит первого члена ряда.

Пример 1. Исследовать, сходится или расходится ряд

Решение. Этот ряд удовлетворяет условиям признака Лейбница:

Следовательно, ряд сходится.

Перейдем теперь к рассмотрению общего случая знакопеременного ряда. Будем предполагать, что в ряде

числа могут быть как положительными, так и отрицательными.

Для таких рядов имеет место следующий достаточный признак сходимости знакопеременного ряда.

Теорема. Если для знакопеременного ряда

сходится ряд, составленный из абсолютных величин его членов

то данный знакопеременный ряд также сходится.

Доказательство. Рассмотрим вспомогательный ряд, составленный из членов рядов (37) и (38):

Таким образом, члены ряда (39) либо равны членам сходящегося ряда (38), либо меньше их. Поэтому ряд (39) сходится на основании признака сравнения (см. п. 5, теорему 1 и сноску на стр. 501).

Умножив все члены сходящегося ряда (38) на получим сходящийся ряд

(см. п. 3, теорема 1). Рассмотрим теперь ряд, являющийся разностью сходящихся рядов (39) и (40)

Этот ряд сходится на основании теоремы 2 п. 3.

Но ряд (37) получается из последнего ряда умножением всех его членов на 2:

Следовательно, ряд (37) также сходится (п. 3, теорема 1).

Пример 2. Исследовать на сходимость знакопеременный ряд (33)

Решение. Рассмотрим ряд, составленный из абсолютных величин членов данного ряда

Этот ряд сходится, как обобщенный гармонический ряд с показателем . Следовательно, на основании доказанного признака сходится и данный ряд (33).

Этот признак является достаточным, но не необходимым. Это значит, что существуют знакопеременные ряды, которые сходятся, в то время как ряды, составленные из абсолютных величин их членов, расходятся.

Действительно рассмотрим ряд

который, очевидно, сходится по признаку Лейбница. Между тем, ряд

составленный из абсолютных величин членов данного ряда является гармоническим и, следовательно, расходится.

Хотя рассмотренные выше ряды (33) и (42) оба сходятся, однако характер их сходимости различен.

Ряд (33) сходится одновременно с рядом (41), составленным из абсолютных величин его членов, тогда как ряд (43), составленный из абсолютных величин сходящегося ряда (42), расходится.

В связи с этим введем следующие определения.

Определение. Знакопеременный ряд абсолютно сходящимся, если сходится ряд, составленный из абсолютных величин его членов

На основании достаточного признака сходимости знакопеременного ряда всякий абсолютно сходящийся ряд будет сходящимся.

Определение. Знакопеременный ряд называется неабсолютно сходящимся, если он сходится, а ряд, составленный из абсолютных величин его членов их расходится.

Возвращаясь к рассмотренным выше примерам, можем сказать, что ряд (33) является абсолютно сходящимся, а ряд ( - неабсолютно сходящимся.

Рассмотрим ряды, члены которых имеют произвольные знаки, такие ряды будем называть знакопеременными (заметим, что в математической литературе термины знакопеременный и знакочередующийся ряд – о таких рядах речь пойдет позже – означают одно и то же; но мы здесь приняли терминологию, используемую Пискуновым Н.С. в его «Дифференциальном и интегральном исчислении» только для сокращения записи: вместо слов «ряд, члены которого имеют произвольные знаки» будем говорить «знакопеременные ряды»). Если заданный ряд имеет только конечное число отрицательных членов, то, отбросив их, можно свести дело к исследованию ряда с положительными членами. То же касается ряда, в котором только конечное число положительных членов. Поэтому будем заведомо предполагать, что среди членов ряда есть бесконечное количество как положительных, так и отрицательных членов.

Справедлива следующая теорема

Теорема 30. 8. (признак абсолютной сходимости)

Пусть дан ряд с членами произвольных знаков. Если сходится ряд

составленный из абсолютных величин его членов, то сходится и данный ряд. При этом .

Определение 30.4. Если ряд сходится и сходится ряд , то ряд называется абсолютно сходящимся . Если ряд сходится, а ряд расходится, то ряд называется условно (не абсолютно) сходящимся .

Для выяснения абсолютной сходимости заданного ряда к ряду из его модулей могут быть применены признаки, рассмотренные нами в предыдущем пункте. Но нужно быть осторожным с признаками расходимости: если ряд из модулей расходится, то исходный ряд может и сходиться (условно). Исключение составляют лишь признак Даламбера и радикальный признак Коши, так как когда эти признаки констатируют расходимость ряда , то это означает, что , но тогда и , что означает расходимость ряда .

Сформулируем эти признаки применительно к знакопеременному ряду

Признак Даламбера. , то

при d < 1 ряд сходится абсолютно,

при d > 1 ряд расходится,

при d =1 нужны дополнительные исследования.

Признак Коши радикальный. Если для знакопеременного ряда существует , то

при K < 1 ряд сходится абсолютно,

при K > 1 ряд расходится,

при K = 1 требуются дополнительные исследования

Пример. Исследуем сходимость ряда . Применим к нему признак Коши: – ряд сходится абсолютно.

Среди знакопеременных рядов особую роль играют так называемые знакочередующиеся ряды . Знакочередующимся рядом называют ряд, члены которого поочередно имеют то положительный, то отрицательный знаки (см предыдущий пример). Такой ряд обычно записывают в виде

при этом предполагается, то все а п > 0.

Для знакочередующихся рядов имеет место

Теорема 30.9. (Теорема Лейбница)

Если члены знакочередующегося ряда убывают по абсолютной величине, т.е."п | a n | >| a n +1 |, и , то ряд сходится. При этом сумма ряда по абсолютной величине не превосходит модуля первого члена ряда, т.е. и имеет тот же знак, что и первый член ряда.

Ряд, удовлетворяющий условиям теоремы Лейбница, называют рядом лейбницевского типа.

Пример . Рассмотрим сходимость ряда . Проверим выполнение условий Теоремы 5.9.: | a n | >| a n +1 |, действительно, > "п ³1, а также , значит, ряд сходится. А так как ряд из абсолютных величин этого ряда есть расходящийся гармонический ряд , то исходный ряд сходится условно.

Замечание. Так как любой остаток ряда лейбницевского типа есть также ряд лейбницевского типа, то в случае сходимости ряда, остаток ряда по абсолютной величине не превосходит модуля своего первого члена:

| R n | = |S – S n | £ |a n +1 |.

Это удобно использовать для оценки точности приближенного вычисления суммы данного ряда.

Ряд называется знакочередующимся, если любые два соседних его члена имеют разные знаки, т.е. ряды вида u 1 – u 2 + u 3 – u 4 +… + u n + …, где u 1 , u 2 , …, u n , … положительны.

Теорема Лейбница. Если члены знакочередующегося ряда, взятые по абсолютной величине, монотонно убывают и модуль общего члена ряда стремится к нулю при , т.е.
, то ряд сходится.

Пример 1.

Исследовать сходимость знакочередующегося ряда:

.

Члены ряда, взятые по абсолютной величине, монотонно убывают:


Ряд сходится.

1.6. Знакопеременные ряды. Абсолютная и условная сходимость ряда

Ряд u 1 + u 2 +…+ u n +… называется знакопеременным, если среди его членов имеются как положительные, так и отрицательные.

Знакочередующиеся ряды являются частным случаем знакопеременных рядов.

Теорема. Дан знакопеременный ряд u 1 + u 2 +…+ u n +…(1). Составим ряд | u 1 |+| u 2 |+…+| u n |+… (2). Если ряд (2), составленный из абсолютных величин членов ряда (1), сходится, то ряд (1) сходится.

Определение. Знакопеременный ряд u 1 + u 2 +…+ u n +… называется абсолютно сходящимся, если сходится ряд, составленный из абсолютных величин его членов |u 1 |+| u 2 |+…+| u n |+… .

Если же знакопеременный ряд (1) сходится, а ряд (2), составленный из абсолютных величин его членов, расходится, то данный знакопеременный ряд (1) называется условно или неабсолютно сходящимся рядом.

Пример 1.

Исследовать на сходимость и абсолютную сходимость ряд:
.

Знакочередующийся ряд сходится по теореме Лейбница, т.к.
. Члены ряда монотонно убывают и
. Теперь исследуем данный ряд на абсолютную сходимость. Рассмотрим ряд, составленный из абсолютных величин членов данного ряда:. Исследуем сходимость этого ряда с помощью признака Даламбера:
. Ряд сходится. Значит, заданный знакочередующийся ряд сходится абсолютно.

Пример 2.

Исследовать на сходимость и абсолютную сходимость ряд:
.

По теореме Лейбница
. Ряд сходится. Ряд, составленный из абсолютных величин членов данного ряда, имеет вид
. По признаку Даламбера получим
. Ряд сходится, значит, заданный знакопеременный ряд сходится абсолютно.

2. Функциональные ряды. Область сходимости функционального ряда

Рассмотрим последовательность функций, заданных на некотором промежутке [ a , b ] :

f 1 (x ), f 2 (x ), f 3 (x ) … f n (x ), ….

Приняв эти функции в качестве членов ряда, образуем ряд:

f 1 (x ) + f 2 (x ) + f 3 (x ) + … + f n (x ) + …, (1)

который называется функциональным рядом .

Например: sin(x) + sin(2x) + sin(3x) + … + sin(nx) + …

В частном случае функциональным рядом является ряд:

который называется степенным рядом , где
постоянные числа, называемыекоэффициентами членов степенного ряда .

Степенной ряд может быть записан и в такой форме:

где
некоторое постоянное число.

При определенном фиксированном или числовом значении x получим числовой ряд, который может быть сходящимся или расходящимся.

Определение : Совокупность всех значений х (или всех точек х числовой прямой), при которых степенной ряд сходится, называется областью сходимости степенного ряда.

Пример 1.

Найти область сходимости степенного ряда:

Решение (1 способ) .

Применим признак Даламбера.


Так как признак Даламбера применим к рядам только с положительными членами , то выражение, стоящее под знаком предела, взято по абсолютной величине.

По признаку Даламбера ряд сходится, если
и
.

Т.е. ряд сходится, если < 1, откуда
или-3< x <3.

Получим интервал сходимости данного степенного ряда: (-3;3).

В крайних точках интервала x =
, будем иметь
.

В этом случае теорема Даламбера не дает ответа на вопрос о сходимости ряда.

Исследуем ряд на сходимость в граничных точках:

x = -3 ,

Получим знакочередующийся ряд. Исследуем его на сходимость по признаку Лейбница:

1.
члены ряда, взятые по абсолютной величине, монотонно убывают.

2.
Следовательно, ряд в точкеx = -3 сходится.

x = 3,

Получим положительный ряд. Применим интегральный признак Коши сходимости ряда.

члены ряда монотонно убывают.

Функция
на промежутке
:


.

Несобственный интеграл расходится, значит, ряд в точке x=3 расходится.

Ответ:

Второй способ определения области сходимости степенного ряда основан на применении формулы радиуса сходимости степенного ряда:

, где и
коэффициентыи
членов ряда.

Для данного ряда имеем:

. R =3.

ряд сходится

Интервал сходимости ряда: -3< x <3.

Далее, как и в предыдущем случае, надо исследовать в граничных точках: x =
.

Ответ: область сходимости ряда [-3;3).

Отметим, что второй способ определения области сходимости степенного ряда с использованием формулы радиуса сходимости ряда
более рационален.

Пример 2.

Найти область сходимости степенного ряда:
.

Найдем R – радиус сходимости ряда.

,
,
.

.
.

Интервал сходимости ряда (-;).

Исследуем ряд на сходимость в точках x = -иx = .

x = - ,

Получим знакочередующийся ряд. Применим признак Лейбница:

1.
члены ряда, взятые по абсолютной величине, монотонно убывают.

2.
, следовательно, ряд в точкеx = -сходится.

x = ,
.

Получили ряд с положительными членами. Применим интегральный признак Коши.

Здесь
:

, члены ряда
монотонно убывают.

Функция
на промежутке
:


.

Несобственный интеграл расходится, ряд расходится.

Ответ: [-;) – область сходимости ряда.