Реферат Преобразование энергии в биосфере. Круговорот веществ и потоков энергии. Поток энергии в биосфере. Энтропийность биосферных процессов. Закономерности эволюции биосферы: принцип Реди; закон глобального замыкания биогеохимического круговорота; закон

С современных позиций биосферу рассматривают как наиболее крупную экосистему планеты. Биосфера, как и любая экосистема, - единый природный комплекс, образованный живыми организмами и средой их обитания, в которой живые и неживые компоненты связаны между собой обменом веществ и энергии. В биосфере протекают процессы окисления органических веществ, а также процессы, направленные к достижению равновесия, которое никогда не достигается, так как новые порции активных соединений благодаря живым организмам все время поступают в систему. Солнечная энергия в виде энергии биохимических связей является энергией геохимиче­ских процессов, преобразующих косные компоненты биосферы.

Любой живой организм биосферы зависит от спектра приземного сол­нечного излучения, температуры, влажности окружающей среды, химического состава воздуха, пищи и других факторов. Жизнедеятельность всех живых организмов, включая челове­ка, представляет собой работу, для осуществления которой требу­ется энергия. Энергия солнечной радиации первична на Земле и имеет преимущественное значение для жизни.

Непрерывный поток солнечной энергии, воспринимаясь мо­лекулами живых клеток, преобразуется в энергию химических свя­зей. Химические вещества последовательно переходят от одних организмов к другим, то есть происходит последовательный упо­рядоченный поток вещества и энергии.

На Земле существует два основных механизма удержания, перераспреде­ления и накопления энергии:

Механизм, характеризующий среду обитания: испарение, конденсация, градиенты плотности в атмосфере и в океане, геохи­мические реакции, эрозия и др. (геохимический круговорот ве­ществ);

Механизм, характеризующий жизнедеятельность биообъек­тов: фотосинтез, дыхание и т.п.

Все типы экосистем регулируются теми же основными закона­ми, которые управляют и неживыми системами, например техни­ческими установками, машинами. Различие заключается лишь в том, что живые системы, используя часть имеющейся внутри них энер­гии, способны самовосстанавливаться, а машины приходится чи­нить, используя при этом внешнюю энергию.

Когда излучение поглощается каким-либо предметом, послед­ний нагревается, то есть энергия излучения переходит в энергию движения молекул, из которых состоит тело, причем, это касается любых физических полей и сред, взаимодействующих с ними. Таким образом, «потребленная» энер­гия на самом деле не расходуется, она только переводится из со­стояния, в котором ее легко превратить в работу, в состояние с ма­лой возможностью использования.

Если температура какого-либо тела выше температуры окру­жающего воздуха, то тело будет отдавать тепло до тех пор, пока его температура не сравняется с температурой окружающей среды, после чего наступает состояние термодинамического равновесия и дальнейшее рассеяние энергии в тепловой форме прекращается. Такая система находится в состоянии максимальной энтропии. Энтропия отражает возможности превращения энергии и рассмат­ривается как мера неупорядоченности системы. Энтропия показыва­ет, что тот или иной процесс может происходить в системе с опре­деленной вероятностью. При этом, если система стремится к рав­новесному состоянию, то энтропия увеличивается и стремится к максимуму.



Применяя положения термодинамики к процессу жизнедея­тельности, можно отметить, что живой организм извлекает энер­гию из пищи, и при этом использует упорядоченность ее химических связей. Часть энергии идет на поддержание жизненных процессов, а часть передается организмам последующих пищевых уровней. В начале этого процесса находится фотосинтез, при котором повышается упорядоченность деградировавших органических и минеральных веществ. При этом энтропия уменьшается за счет поступления энергии от Солнца.

Самоорганизация и эволюция биологических систем на всех уровнях, начиная с клетки и кончая биосферой в целом, происходят вследствие оттока энтропии в окружающую среду. Земля получает энергию от Солнца в виде излучения. Такое же количество энергии отдается вновь, но при более низкой температуре.

Согласно второму началу термодинамики, энергия любой сис­темы стремится к уменьшению, то есть к термодинамическому равновесию, что равнозначно максимальной энтропии. В такое состояние живой организм перейдет, если лишить его возможно­сти извлекать упорядоченность (энергию) из окружающей среды. Закон энтропии универсален и безграничен и гласит, что утратив­шая чувство гармонии любая структура немедленно поглощается живой природой.

Методы термодинамики применимы только к макроскопиче­ским системам, состоящим из большого числа частиц. Система, которая не может обмениваться со средой ни энергией, ни вещест­вом, является изолированной, например камни, шлаки. Если происходит обмен только энергией, то система называется замкнутой (тепло­обменники), а если и энергией, и веществами - открытой (био­объекты). При применении термодинамики к биологическим системам необходимо учитывать особенности организации живых систем:

Биологические системы открыты для потоков вещества и энергии;

Процессы в живых системах в конечном счете имеют необра­тимый характер;

Живые системы далеки от равновесия;

Биологические системы гетерофазны и структурированы.

Рассматривая биосферу под потоком энергии понимают переход энергии по цепям питания от одного трофического уровня к другому, т.е. трофическая цепь – это энергетическая цепь. Все биосистемы открыты для обмена энергией. Все живые системы поддерживают свою жизнедеятельность благодаря:

1 -х, наличию даровой избыточной энергии (извне поступает даровая энергия солнца);

2 -х, благодаря способности эту энергию улавливать и концентрировать (только живые системы способны улавливать и концентрировать энергию);

3 - х, использовав, рассеивать ее в окружающей среде.

Рассмотрим путь поглощения солнечного света фотосинтезирующими организмами с продуцированием органического вещества.

Практически всё первичное органическое вещество на Земле образуется зёлёными растениями в процессе фотосинтеза. Этот процесс идёт с поглощением энергии, которая запасается в химических связях органического вещества. При этом солнечная кинетическая энергия превращается в потенциальную энергию молекул глюкозы.

Любое количество органического вещества эквивалентно количеству энергии. Глюкоза (6CO 2 + 6H 2 0 + 2816 Дж, хлорофилл à C 6 H 12 O 6 + 6O 2 ) - это органическая молекула с высокой потенциальной энергией. Около 2 % солнечной энергии превращается в потенциальную энергию молекул глюкозы. Глюкоза в растениях выполняет 2 функции:

1) - служит строительным материалом тела, т.е. из глюкозы образуются сложные органические молекулы (крахмал, целлюлоза, липиды, белки, нуклеиновые кислоты).

2) - источник энергии для всех процессов жизнедеятельности растений, т.е. построение тканей, поглощение питательных элементов из почвы, дыхание.

Процесс расщепления органических молекул с выделением энергии называетсяклеточным дыханием .

На примере глюкозы процесс расщепления выглядит следующим образом: С 6 Н 12 О 6 + 6О 2 Þ 6СО 2 + 6H 2 О + Q

Т.е. молекула глюкозы в присутствии кислорода разрушается до СО 2 , Н 2 О с выделением энергии. Данный процесс идёт в каждой клетке и в целом противоположен фотосинтезу (травы - тратится 40-50 % запасенной энергии; деревья – тратится 70-80 % энергии, в основном на дыхание). Только часть глюкозы используется растением для своего роста, а другая часть вновь разрушается с выделением энергии, необходимой для протекания физиологических процессов.

Животные получают энергию потребляя пищу, т.е. иточник энергии - потенциальная энергия органических молекул, потребляемых в составе пищи. Животным свойственна активная выработка кинетической энергии (движение, бег, поддержание постоянной температуры тела, дыхание и т.д.). Значительная часть пищи (90 - 99 %) разрушается с высвобождением энергии, которая обеспечивает все функции организма и теряюется, рассеивается, в конце концов, в виде выделяемого телом тепла. Итак, энергия в экосистемах тратится на:

1) метаболизм (большей частью на поддержание метаболических процессов, которые называют тратой на дыхание)

2) образование тканей и органов, запас питательного вещества (т.е. рост биомассы)

3) выделение не усваиваемых веществ (экскрементов)

4) рассеивание в виде тепла при химических реакциях и активной мышечной работе.

Как видим, биосфера, как и все типы экосистем, регулируются теми же основными законами, которые управляют и неживыми системами, а именно:

- законом сохранения энергии : энергия не может исчезать бесследно или возникать из ничего. Но энергия переходит из одной формы в другую;

- первым законом термодинамики : термодинамическая система может совершать работу только за счёт своей внутренней энергии или каких-либо внешних источников энергии;

Во всех экосистемах и биосфере в целом происходит превращение энергии из одной формы в другую, а именно солнечной энергии в потенциальную энергию, запасаемую растениями, а её - в другие виды по мере прохождения по пищевой цепи;

На каждом трофическом уровне часть потенциальной энергии пищи расходуется на жизненные функции, а часть теряется в виде тепла – рассеивается в окружающую среду. При переходе с одного трофического уровня на другой теряется большая часть энергии (около 90 %).

Поскольку некоторая часть энергии всегда рассеивается в виде недоступной для использования тепловой энергии, эффективность самопроизвольного превращения кинетической энергии (например, света) в потенциальную (например, энергию химических соединений протоплазмы) всегда меньше 100 %.

Энергия может быть использована только один раз , а пищевая цепь - это основной канал переноса энергии в экосистемах. Однако между живыми и неживыми системами имеется существенное различие. Советский ученый Э.С.Бауэр в 1935 г. выделил 3 основные особенности живых систем:

1) способность к самопроизвольному, без воздействия окружающей среды, изменению состояния;

2) противодействие внешним силам, приводящее к изменению первоначального состояния окружающей среды;

3) постоянная работа против уравновешивания с окружающей средой.

Первые 2 особенности встречаются и у других систем, а вот третья является отличительным признаком живых. Поэтому Бауэр назвал ее "всеобщим законом биологии ", который имеет ясный термодинамический смысл: как в неживых системах устойчиво их равновесное состояние, так в живых системах устойчиво их неравновесное состояние.

Если неживую неуравновешенную с окружающей средой систему изолировать, то всякое движение в ней скоро прекратится. В результате трения, теплопроводности, химических реакций и других самопроизвольных процессов потенциалы выровняются, система в целом угаснет и превратится в инертную массу материи, находящуюся в состоянии термодинамического равновесия, то есть максимальной энтропии.

Все, что происходит в природе, ведет к увеличению энтропии в той части мира, где это происходит.

С точки зрения термодинамической статистики энтропия характеризует вероятность возникновения того или иного состояния: маловероятное состояние – это состояние с низкой энтропией, вероятное состояние – состояние с высокой энтропией.

С точки зрения упорядоченности, максимальная энтропия – это максимальный беспорядок, т.е. хаос, а низкая энтропия характеризует упорядоченные системы. Поэтому, с одной стороны, живые системы непрерывно увеличивают свою энтропию, то есть производят положительную энтропию, и приближаются к опасному состоянию максимальной энтропии – энтропии смерти (максимальному беспорядку).С другой стороны, неравновесное состояние живых систем представляет собой чрезвычайно маловероятную структуру ® обладающую очень низкой энтропией. Для того, чтобы поддерживалось неравновесное состояние, биосистемам необходимо освободиться от производимой положительной энтропии и извлечь отрицательную энтропию (негоэнтропию) из окружающей среды (т.е. извлекая из окружающей среды отрицательную энтропию, живые организмы находятся в неравновесном состоянии – состоянии с низкой S, состоянии жизни)

Поскольку чем меньше энтропия, тем больше порядок , тоизвлечение негоэнтропии есть "извлечение порядка", и таким образом повышение собственной упорядоченности системы.

Процесс образования порядка в системе из хаоса называется самоорганизацией . Он ведет к уменьшению энтропии. Для живых организмов способность к самоорганизации – характерная особенность.

Известно, что высшие животные питаются хорошо упорядоченными органическими соединениями. Использовав упорядоченность этих продуктов, животные возвращают в окружающую среду вещества в очень деградировавшей, неупорядоченной форме (т.е. отдают энтропию).

Эти вещества в неупорядоченной форме (с высокой энтропией) усваиваются растениями. Но для растений мощным средством выработки отрицательной энтропии является солнечный свет, с помощью которого в хлорофилле происходит повышение упорядоченности деградировавших веществ - фотосинтез, и цикл повторяется. Это единственный на Земле естественный, самопроизвольный процесс, в котором энтропия уменьшается - за счет затрат даровой солнечной энергии.

Коэффициент перехода кинетической энергии света в потенциальную энергию связи органических соединений много меньше 100 %. Но энергия света достается даром! Поэтому нам все равно, с каким КПД ее будут расходовать растения, пусть он будет даже очень мал. Главное, растения и все "живое" обладают тайнами механизмов концентрирования и диссипирования энергии.

Таким образом, важнейшая термодинамическая характеристика организмов, экосистем и биосферы в целом является:

Способность создавать и поддерживать высокую степень внутренней упорядоченности, то есть неуравновешенное состояние с низкой энтропией;

Для поддержания внутренней упорядоченности в системе, находящейся при температуре выше абсолютного нуля, когда существует тепловое движение атомов и молекул, необходима постоянная работа по откачиванию "неупорядоченности";

Эта работа предполагает постоянно действующий источник энергии и наличие хорошо развитых "диссипативных структур" у самой системы. Низкая энтропия достигается постоянным и эффективным рассеянием легко используемой концентрированной энергии (например, энергии света, горючего, пищи) и превращением ее в энергию, используемую с трудом (например, в тепловую).

Дыхание высокоупорядоченной биомассы можно рассматривать как диссипативную структуру экосистемы. Это затрата энергии на поддержание жизнедеятельности.

Итак, биосфера и любые экосистемы представляют собой открытые неравновесные термодинамические системы, постоянно обменивающиеся с окружающей средой энергией и веществом, уменьшая этим энтропию внутри себя, но увеличивая энтропию вовне.

В силу второго закона термодинамики этот процесс связан с рассеиванием энергии, с ее потерями, которое все время компенсируется поступлением энергии от Солнца. Таким образом, наша цивилизация - лишь одно из замечательных явлений природы, зависящих от постоянного притока концентрированной энергии светового излучения.

Биосфера - целостная система, выполняющая определенную программу, стабилизирующая себя и окружающую сре­ду и гасящая внешние и внутренние искажающие воздействия. Такая система реагирует на воздействия, вызываемые человеком. До опреде­ленного порога она их гасит, а затем может потерять устойчивость и начать изменяться. Как только человечество на грани ХIХ и ХХ вв. стало использовать большее количество от общей энергетики биосферы - прекратилось действие компенсационного механизма: растительность прекратила давать прирост биомассы, пропорциональный увеличению концентрации СО 2 в атмосфере.

Момент выхода природных систем из стационарного состояния имеет особое значение. Считается, что для природных систем при внесении в них возмущения на уровне 1% (правило одного процента) от общего потока энергии, проходящего через систему, находится порог выхода системы из стационарного состояния. Однако, по мнению Н.Ф. Реймерса, для глобальной энергетической системы (биосферы) этот процесс начинается от привнесения возмущений на уровне 0,1 - 0,2 % от величины общепланетарных процессов. При этом происходят заметные природные аномалии. Так, существенный рост опустынивания отмечен еще в прошлом веке, а влияние деятельности человека на глобальные климатические процессы за последние двести лет окончательно доказано лишь к концу второго тысячелетия.

Человеку необходимо помнить, что при всей мощи научно-технического про­гресса он остается частью биосферы, что, разрушив совре­менную материально-энергетическую структуру биосферы, он разру­шит и самого себя.

Вопросы для самоконтроля

1. Дайте определение биосферы. Какова ее структура?

2. Кто впервые ввел в науку термин «биосфера»?

3. Чем отличается биосфера от других оболочек планеты?

4. В чем отличие живого от неживого?

5. Что такое живое вещество?

6. Назовите функции живого вещества.

7. Каковы важнейшие аспекты учения В. И. Вернадского о биосфере?

8. Что такое ноосфера и почему возникло это понятие?

9. Возможно ли возникновение ноосферы в результате коэволюции человеческого общества и природной среды?

10. Расскажите о гипотезе ноосферы В.И. Вернадского.

11. Что составляет основу биологического круговорота, обеспечивающего жизнь на Земле?

12. Где взаимодействуют большой и малые круговороты веществе?

13. Укажите, при каких процессах происходит поглощение кислорода из атмосферы.

14. За какое время происходит обновление запаса кислорода в атмосфере?

15. За какой период времени претерпевает круговорот весь активный неорганический фонд углерода?

16. Назовите основной источник пополнения запаса кислорода в атмосфере.

17. Перечислите основные этапы круговорота азота. Через какие каналы атмосферный азот попадает в экосистемы?

18. В какой форме могут усваивать азот растения?

19. Где сконцентрированы запасы фосфора?

20. Какие последствия для сельского хозяйства будет иметь исчерпание запасов фосфора?

1. Вернадский В.И. Химическое строение биосферы Земли и ее окружения. - М.: Наука, 2001. 376 с. (Серия "Библиотека трудов академика В.И. Вернадского").

2. Стадницкий Г.В. Экология. Учебник для вузов. - СПб: Химиздат, 2007. – 288 с.: ил.

3. Еремченко О.З. Учение о биосфере. Учебное пособие для вузов - 2 изд. - М: Академия, 2006. – 240 с.

4. Еремченко, О.З. Учение о биосфере. Организованность биосферы и биогеохимические циклы. Учебное пособие - Пермь: Перм. гос. ун-т., - 2010. - 104 с.

5. Николайкин Н.И., Николайкина Н.Е., Мелехова О.П. Экология: Учеб. для вузов - 3-е изд. - М.: Дрофа, 2004. - 624 с: ил.

6. Павлов А.Н. Экология: рациональное природопользование и безопасность жизнедеятельности: Учеб. пособие - М.: Высшая школа, 2005. - 343 с.: ил.

7. Миркин Б. М., Наумова Л. Г. Краткий курс общей экологии. Часть II: Экология экосистем и биосферы: Учебник.- Уфа: Изд-во БГПУ, 2011. - 180 с.

8. Электронный ресурс – URL: http://ru.wikipedia.org/wiki.


ГЛАВА 5. ПРИРОДНЫЕ РЕСУРСЫ БИОСФЕРЫ И РАЦИОНАЛЬНОЕ ПРИРОДОПОЛЬЗОВАНИЕ

Текущая страница: 17 (всего у книги 49 страниц) [доступный отрывок для чтения: 33 страниц]

Шрифт:

100% +

3.4. Движение вещества и энергии в биосфере
3.4.1. Круговорот веществ в биосфере

Во все геологические периоды геосфера как внешняя оболочка Земли, в которой взаимодействуют земная кора, атмосфера (до озонового слоя), гидро– и биосфера и где сосредоточены жизнь и хозяйственная деятельность человека, развивалась как единое целое. Единство, саморегулирование и развитие обеспечивались непрерывным движением вещества и энергии в биосфере. Первоисточником энергии для экосистем служит Солнце. Поток солнечной энергии на Земле и ее трансформации показаны на рис. 3.1.

Поток энергии, посылаемый Солнцем к планете Земля, превышает 20 млн ЭДж/год. Из-за шарообразности Земли к границе всей атмосферы подходит только четверть этого потока. Из нее около 70 % отражается, поглощается атмосферой, излучается в виде длинноволнового инфракрасного излучения. Падающая на поверхность Земли солнечная радиация составляет 1,54 млн ЭДж/год.


Рис. 3.1. Поток солнечной энергии на Земле и ее трансформации (по Т.А. Акимовой, В.В. Хаскину, 1994):

П р и м е ч а н и е. Энергия выражена в эксаджоулях (ЭДж/год). 1 ЭДж = 10 18 Дж; горизонтальное сечение потока энергии – логарифмическое. На каждом из этапов трансформации большая часть энергии теряется.

Биосфера играет важную роль в распределении энергетических потоков на Земле. В год до Земли доходит около 1024 Дж солнечной энергии; 42 % из нее отражается обратно в космос, а остальная часть поглощается. Другим источником энергии является теплота земных недр: 20 % энергии возвращается в мировое пространство в виде теплоты, 10 % расходуется на испарение воды с поверхности Мирового океана. Зеленые растения в процессе фотосинтеза преобразуют около 10 22 Дж энергии в год, поглощают 1,7·10 8 т углекислого газа, выделяют около 11,5·10 7 т кислорода и испаряют 1,6·10 13 т воды. Исчезновение растений привело бы к катастрофическому накоплению углекислого газа в атмосфере, и через сотню лет жизнь на Земле в ее нынешних проявлениях погибла бы. Наряду с фотосинтезом в биосфере происходят почти такие же по масштабам процессы окисления органических веществ при дыхании и разложении.

В организмах содержатся все известные сегодня химические элементы. Для синтеза живого вещества необходимо примерно 40 элементов. Наибольшую роль выполняют основные биогенные элементы.

Биогенные элементы – это химические элементы, постоянно входящие в состав организмов. Они выполняют жизненно необходимые биологические функции, т. е. являются основой жизни. Прежде всего, это кислород (составляющий 70 % массы организмов), углерод (18 %), водород (10 %).

Другие элементы требуются в меньших количествах, но и они также необходимы. Это кальций, железо, калий, магний, натрий, кремний и др. Все элементы попеременно переходят из живой материи в материю косную (неживую), участвуя в более или менее сложных биогеохимических циклах.

Успехи аналитической химии и спектрального анализа расширили перечень биогенных элементов: ученые открывают все новые элементы, входящие в состав организмов в малых количествах (микроэлементы ), и открывают биологическую роль многих из них. Вернадский считал, что все химические элементы, постоянно присутствующие в клетках и тканях организмов в естественных условиях, вероятно, играют определенную физиологическую роль. Многие элементы имеют большое значение только для определенных групп живых существ (например, бор необходим для растений, ванадий – для асцидий и т. п.).

Содержание тех или иных элементов в организмах зависит не только от их видовых особенностей, но и от состава среды, пищи (в частности, для растений – от концентрации и растворимости тех или иных почвенных солей), экологических особенностей организма и других факторов. Все элементы попеременно переходят из живой материи в косную (неживую), участвуя в сложных биогеохимических циклах, которые можно разделить на две основные группы:

Круговорот газов и воды, в котором главным резервуаром элементов служит атмосфера (круговорот углерода, азота, кислорода);

Круговорот осадочный, элементы которого в твердом состоянии находятся в составе осадочных пород (круговорот фосфора, железа и серы).

Организмы участвуют в миграции химических элементов как прямо (выделение кислорода в атмосферу, окисление и восстановление различных веществ в почвах и гидросфере), так и косвенно (восстановление сульфатов, окисление соединений железа, марганца и других элементов). Биогенная миграция атомов вызвана тремя основными процессами: обменом веществ, ростом и размножением организмов.

Огромную роль в биогеохимической активности играет человек, извлекая ежегодно в ходе добычи полезных ископаемых миллиарды тонн горной породы. Влияние человека на глобальные геохимические процессы с каждым годом только растет.

Солнечная энергия на Земле вызывает два круговорота веществ:

Биосферный – безостановочный планетарный процесс закономерного циклического, но неравномерного перераспределения веществ, информации и энергии, многократно входящих в экосистемы биосферы. Это так называемый большой круг биотического обмена ;

Биогеоценотипический – многократное циклическое, но неравномерное во времени и незамкнутое обращение части веществ, энергии и информации, входящих в биосферный круговорот, в пределах биогеоценоза. Это так называемый малый круг биотического обмена .

Оба круговорота взаимосвязаны и представляют собой единый процесс.

На рис. 3.2. представлена принципиальная схема биотического круговорота.


Рис. 3.2. Принципиальная схема биологического (биотического) круговорота (по К.Ф. Реймерсу, 1990)


Основу биосферы и ее функций составляет, прежде всего, круговорот таких биологически важных веществ, как углерод, кислород, фосфор, азот и вода. Циклы элементов существенно отличаются от простого физического преобразования энергии, которая, в конце концов, деградирует в виде теплоты и никогда потом не используется снова.

Круговорот углерода является наиболее значимым для сохранения свойств биосферы. Единственным источником углерода, используемого автотрофными растениями для синтеза органического вещества, служит углекислый газ (диоксид углерода) – CO 2 , входящий в состав атмосферы или находящийся в растворенном состоянии в воде. Углерод горных пород (преимущественно карбонаты) автотрофами практически не используется.

Круговорот углерода начинается с фиксации атмосферного углекислого газа в процессе фотосинтеза (рис. 3.3).


Рис. 3.3. Круговорот углерода в биосфере


В результате фотосинтеза из диоксида углерода и воды образуются углеводы и высвобождается кислород, поступающий в атмосферу. Часть образовавшихся углеводов используется самим фотосинтезирующим организмом (зеленым растением или некоторыми микроорганизмами и простейшими) для получения энергии, идущей на рост и развитие, а часть – животными при поедании этих организмов. При этом диоксид углерода уходит в окружающую среду через корни, листья и некоторые другие органы растений, а также выделяется животными в процессе дыхания.

Мертвые животные и растения постепенно разлагаются микроорганизмами почвы, углерод их тканей окисляется до CO 2 и снова возвращается в атмосферу. Аналогичный процесс происходит не только на суше, но и в океане. Благодаря длительной фотосинтезирующей деятельности в атмосфере накопилось достаточное количество свободного кислорода для процветания белковой жизни. Более того, в настоящее время для процесса фотосинтеза лимитирующим фактором является не только низкое содержание в атмосфере СO 2 , но и высокое – кислорода. Фотосинтезирующие зеленые растения и карбонатная система моря весьма эффективно удаляют из атмосферы избыток СO 2 , который может привести к перегреву планеты и угнетению жизни.

Однако необыкновенно возросшее потребление ископаемого топлива, газовые выбросы промышленности, а также снижение поглотительной способности зеленых растений в связи со значительным сокращением лесов, прежде всего влажных джунглей Амазонки и таежных лесов Сибири, влияние ряда химических загрязнителей на сам процесс фотосинтеза начинают заметно отражаться и на атмосферном фонде круговорота углерода.

О масштабах круговорота углерода можно судить по следующим цифрам. Запасы углерода в атмосфере оцениваются в 700 млрд т, в гидросфере – в 50 000 млрд т. Если принять, что общий годовой фотосинтез, согласно существующим подсчетам, составляет соответственно 30 и 150 млрд т, то продолжительность круговорота углерода равна трем или четырем столетиям, а по некоторым данным, – 1000 лет. Действительно, содержание СO 2 в атмосфере не уменьшается, так как его запасы постоянно пополняются за счет дыхания, брожения и сгорания. Наоборот, существует реальная опасность того, что в результате развития промышленного производства и нарушения равновесного состояния биосферы содержание СO 2 в атмосфере может значительно вырасти, что приведет к целому ряду отрицательных эффектов.

Круговорот воды в биосфере (рис. 3.4) предполагает, что суммарное испарение уравновешивается выпадением осадков. В средних широтах растения способны задерживать до 25 % воды, выпадающей в виде осадков. Остальная вода впитывается в почву или стекает по поверхности в водоемы. Благодаря испарению часть воды снова возвращается в атмосферу.

В Германии был проведен количественный учет дождевой воды на всей территории страны. Выяснилось, что из годовой нормы осадков в 771 мм только 367 мм, или меньше 50 %, достигает моря в виде ливневых стоков; остальная вода, т.e. 404 мм, испаряясь, возвращается в атмосферу. Растения поглощают и транспирируют (испаряют) в атмосферу 38 % осадков. Показано, что задерживается и идет на создание живого вещества всего 1 % атмосферной влаги.



Рис. 3.4. Круговорот воды в биосфере


В экваториальных районах испарение играет еще более существенную роль. Например, известно, что тропические леса бассейна реки Конго испаряют 2/3 выпадающих осадков. Ежегодно с поверхности Мирового океана в атмосферу испаряется около 880 мм, с суши – 140 мм воды и столько же выпадает на Землю в виде осадков. Живые организмы играют активную роль в круговороте воды на Земле. Подсчитано, что вся вода планеты проходит через живую оболочку Земли за 2 млн лет. Из океана испаряется больше воды, чем попадает в него с осадками, на суше – наоборот. Лишние осадки, выпадающие на суше, попадают в ледяные шапки и ледники и сохраняются там, пополняя грунтовые воды, откуда растения забирают их с помощью корневой системы и используют на рост и развитие. Грунтовые воды питают реки и озера, из которых снова возвращаются в океан со стоком.

Удаление некоторого количества воды в виде паров и водорода в космос компенсируется в основном за счет ювенильной воды, т.e. поднимающейся на поверхность из глубоких магматических очагов в результате вулканической деятельности и землетрясений.

Круговорот азота (рис. 3.5) также охватывает все области биосферы. Его запасы в атмосфере практически неисчерпаемы, однако высшие растения могут усваивать азот лишь после того, как он образует легкорастворимые соли с водородом или кислородом. В этом процессе основополагающую роль играют азотфиксирующие бактерии. Растения, поглотившие азот, в дальнейшем поедаются животными. С энергетической точки зрения круговорот азота можно представить как ряд этапов, которые требуют энергии извне либо получают ее за счет энергонасыщенных соединений. В процессе круговорота азот протоплазмы переводится из органической в неорганическую форму в результате деятельности нескольких видов бактерий, каждый из которых выполняет одну индивидуальную функцию.


Рис. 3.5. Круговорот азота в биосфере


Атмосферный воздух является кладовой азота, так как на 78,09 % он состоит из него, но, как уже указывалось ранее, чтобы высшие растения смогли атмосферный азот усвоить, он должен соединиться с кислородом или водородом. С помощью азотфиксирующих бактерий азот атмосферы переходит в легкоусвояемые растениями формы. Растения, использовавшие азотсодержащие соли на pocт и развитие, поедаются животными. Продукты жизнедеятельности последних также с помощью бактерий разлагаются до аммиака, а затем другими микроорганизмами связываются до нитратов и нитритов и т. д. Таким образом, азот постоянно поступает в атмосферу благодаря жизнедеятельности денитрифицирующих бактерий, а также образуется при атмосферных электроразрядах (молниях) и снова включается в круговорот за счет деятельности азотфиксирующих бактерий и зеленых водорослей.

Для круговорота азота, как и для любого другого процесса, необходима энергия. Хемосинтезирующие бактерии, превращающие аммиак через ряд процессов в нитриты, получают энергию за счет разложения; денитрифицирующие и азотфиксирующие бактерии – за счет других источников.

Азот могут фиксировать многие бактерии, такие как свободноживущие Azotobacter и Clostridium , симбиотические клубеньковые бактерии бобовых растений, некоторые пурпурные и различные почвенные бактерии. Кроме того, показано, что водоросли и бактерии, живущие на листьях, и эпифиты тропических лесов также могут фиксировать атмосферный азот, часть которого опосредованно используется и деревьями, однако, не обнаружено ни одного высшего растения, которое могло бы самостоятельно получать азот из атмосферы и использовать его в процессе жизнедеятельности. Известно, что в биосфере в целом за год в среднем фиксируется из воздуха 140–700 мг/м 3 азота. В основном это биологическая фиксация, и лишь крайне незначительное количество фиксируется за счет фотохимических и электрических процессов.

Круговорот фосфора (рис. 3.6), в отличие от круговорота азота, является сравнительно простым процессом, хотя по своей значимости для биосферы ему не уступает. Основные запасы фосфора содержатся в различных горных породах, которые постепенно за счет вымывания и выветривания отдают фосфаты наземным экосистемам. Фосфаты потребляются, прежде всего, растениями разного уровня организации и используются ими для синтеза органических веществ, таких как аминокислоты, ферменты и др. При разложении растительных остатков и трупов животных бактериями фосфаты возвращаются в почву и затем снова используются растительными организмами и микробами. Помимо этого часть фосфатов выносится с паводковыми водами в море, что обеспечивает развитие фитопланктона и существование зависящих от него организмов. Часть фосфора, содержащегося в морской воде и морских организмах, может вновь возвращаться на сушу при вылове рыб, моллюсков, ракообразных, водорослей и т. д.



Рис. 3.6. Круговорот фосфора в природе


Фосфор – один из наиболее важных элементов живого вещества. Он принимает участие в основных биохимических реакциях, обеспечивающих жизнедеятельность организма и его целостность. В связи с высокой активностью в окружающей среде свободный фосфор является относительно редким элементом. Ежегодно человеком добывается 2–2,5 млн т фосфорсодержащих пород, используемых в качестве минерального сырья для получения ряда продуктов, при этом большая часть фосфора исключается из круговорота. Запас же таких пород ограничен, и уже в настоящее время ощущается их дефицит.

Круговорот биогенных элементов в значительной мере обеспечивает плодородие почв. На суше главным источником биогенных катионов служит почва, в которую они поступают в процессе разрушения материнских пород, а также приносятся атмосферными осадками. Катионы адсорбируются корнями, а затем распределяются по разным вегетативным органам растений. В наибольшем количестве биогенные катионы накапливаются в листьях. Травоядные животные поедают растительную биомассу, травоядных животных поедают хищники или они умирают, минерализация экскрементов и трупов возвращает биогенные элементы снова в почву. В умеренных широтах бо́льшая часть минеральных питательных веществ сохраняется в мощном слое гумуса, в котором создаются резервы биогенов и основных питательных веществ. Поэтому выкашивание травы, сбор опада в лесу, выпас скота, корчевка пней, выжигание растительности, снятие дерна приводит к исчезновению такого ресурса питательных веществ, как гумус. В результате этого нарушается круговорот биогенных элементов, происходит трансформация лесной экосистемы в пустошь или луг со скудной растительностью.

3.4.2. Основные закономерности движения энергии в биосфере

Все преобразования веществ в процессе круговорота требуют затрат энергии. Ни один живой организм самостоятельно не продуцирует энергию, она может быть получена только извне. В современной биосфере основным источником энергии для биогенного круговорота является Солнце. По приблизительным расчетам, если энергию солнечного излучения принять за 100 %, то только 15 % ее достигает поверхности Земли и только 1 % связывается в виде органического вещества растениями, основными продуцентами первичной продукции. Около половины этой энергии расходуется на процессы жизнедеятельности (потери на дыхание). Оставшиеся 50 % идут на рост биомассы. Таким образом, чистая продукция соответствует примерно 0,5 % солнечной энергии, падающей на Землю. Накопленная в процессе фотосинтеза биомасса растений (первичная продукция) – это резерв, часть которого используется в качестве пищи организмами – гетеротрофами (консументами 1-го порядка). Остальная часть – это реальное количество массы растительности в экосистеме.

По словам Одума, «экология, по сути дела, изучает связь между светом и экологическими системами и способы превращения энергии внутри системы».

Жизнь возникает и развивается в потоке энергии, которая частично аккумулируется в биосистемах в разного рода круговоротах вещества. Ранее были рассмотрены только глобальные круговороты, охватывающие всю биосферу в целом. Кроме этого, существуют и малые круговороты, характерные для отдельных экосистем. В любом многоклеточном организме также можно выделить несколько круговоротов, необходимых для жизнедеятельности, аналогичных биогеохимическим циклам биосферы.

Подобные движения вещества можно наблюдать и в цитоплазме одноклеточных организмов. Даже в небиологических системах при достаточно большой разнице сил на входе и выходе системы можно наблюдать переход ее в нелинейное состояние, иногда достаточно явно сопровождающийся возникновением циклических движений вещества или автоколебаний (например, турбулентное течение жидкости, ячейки Бернара, реакции Белоусова – Жаботинского и т. п.). Иначе говоря, внутрисистемный круговорот веществ – это и есть способ аккумулировать энергию в системе.

Движение энергии в биосфере существенно отличается от движения вещества.

Согласно принципу роста энтропии поток энергии направлен всегда в одну сторону, круговорот энергии невозможен. Живое вещество уменьшает энтропию части энергии, аккумулируя ее в своих структурах. Но большая часть энергии, проходя через биосферу, деградирует и покидает планету в виде низкокачественной тепловой энергии. Энергия может накапливаться, затем снова высвобождаться, но ее нельзя использовать вторично.

Принципиальная невозможность утилизации тепловой энергии на фоне прогрессирующего роста количества энергии, высвобождаемой человеком непосредственно на планете (сжигание топлива, расщепление ядра, ядерный синтез и т. п.) помимо солнечной энергии, есть один из важнейших факторов надвигающейся экологической катастрофы.

Известно, что потребление энергии человечеством на нашей планете исторически протекало крайне неравномерно и возрастало параллельно со скоростью накопления информации. Люди за всю историю своего существования израсходовали около 900–950 тыс. ТВт∙ч энергии всех видов, причем почти две трети этого количества приходится на последние 40–50 лет. За последние 100 лет мировое потребление энергии увеличилось в 14 раз. Суммарное потребление первичных энергоресурсов за это время превысило 380 млрд т условного топлива со средним КПД энергетики техносферы, равным 30 %.

Относительный вклад различных энергоносителей в общее использование энергии характеризуется такими средними величинами: уголь – 27 %; нефть – 34, газ – 17, гидроэнергия – 6, ядерная энергия – 8,5, прочие источники – 7,5 %.

Энергетическая мощность нынешней техносферы по величине приблизительно равна 6 % всей продукционной мощности экосферы.

3.4.3. Энергетика биосферы

Энергия – это способность совершать работу. Несмотря на то что вся современная наука проникнута этим понятием, природа энергии до сих пор до конца не понята.

Впервые наиболее полно понятие энергии было проработано в термодинамике, что вылилось в формулировку двух наиболее основополагающих законов, описывающих свойства энергии.

Более 100 лет назад установлен первый закон термодинамики , или закон сохранения энергии , – один из фундаментальных законов физики, который нашел свое подтверждение в различных областях – от механики Ньютона до ядерной физики.

Согласно этому закону энергия не может быть уничтожена или получена из ничего, она может лишь переходить из одной формы в другую, т. е. никогда не исчезает и не создается заново.

Частным случаем данного закона является первое начало термодинамики , которое устанавливает взаимную превращаемость всех видов энергии: теплота Q , сообщенная неизолированной системе (например, пару в тепловой машине), расходуется на увеличение ее внутренней энергии ΔU и совершение ею работы А против внешних сил:

Q = ΔU + A .

Второе начало термодинамики , или закон возрастания энтропии , – все реальные процессы превращения энергии сопровождаются ростом энтропии, т. е. переходом энергии в более рассеянное состояние.

Все процессы в природе подчиняются действию этих законов термодинамики и непосредственно связаны с количеством и качеством используемой энергии.

Энтропия – это величина, характеризующая направление естественных процессов теплопередачи и, как выяснилось, вообще любых процессов преобразования энергии.

Энтропию называют тенью энергии. В более широком смысле под энтропией понимают меру качества, т. е. меру концентрации и упорядочения энергии. Тепловая энергия с бо́льшей температурой обладает меньшей энтропией:

S = Q / T ,

т. е. бо́льшим качеством, чем такое же количество теплоты при меньшей температуре. Поэтому по мере понижения температуры рабочего тела, например пара, до температуры окружающей среды можно попутно превратить часть тепловой энергии в механическую работу (тепловая машина). Чем больше качество энергии, т. е. чем больше превышение температуры пара над температурой окружающей среды, тем большее количество работы можно получить.

Разные виды энергии обладают разным качеством. Например, упорядоченное движение частиц твердого тела (механическое движение) обладает бо́льшим качеством, чем хаотичное движение этих же частиц с той же средней скоростью (тепловое движение). Поэтому любое механическое движение при наличии трения сопровождается самопроизвольным превращением части механической энергии в тепловую.

Если говорить об энергии, особенно в контексте, связанном с энергетическим кризисом, следует помнить, что энергии на Земле вполне достаточно. Теплоход, идущий по океану, двигается по морю энергии. Тем не менее он вынужден везти с собой запас угля, потому что энергия океана обладает низким качеством. Для полезного использования нужна именно высококачественная энергия, энтропия которой ниже энтропии энергии, рассеянной в окружающей среде. Энергию океана можно использовать только при наличии холодильника с более низкой температурой, чем температура океана.

Именно разность энтропий на входе и выходе энергетического потока порождает фактор, который обозначается понятием силы , приводящей в движение все процессы в природе. По сути, любая сила имеет энтропийную природу.

Наличие упорядоченных структур типа кристаллических решеток способствует упорядочению движения частиц за счет уменьшения их степеней свободы. Принцип роста энтропии требует роста количества степеней свободы в каждом реальном процессе превращения энергии. Поэтому все упорядоченные структуры имеют тенденцию к разрушению. «Все разрушается, все умирает, все приходит в хаос» – это еще одна формулировка второго закона термодинамики.

Помимо такого разрушения есть еще один способ увеличения количества степеней свободы – усложнение структуры системы. Именно по этому пути движется глобальный эволюционный процесс. При этом природа никогда не стремится достичь полного хаоса на данном уровне системной иерархии. В этом случае эволюция Вселенной остановилась бы достаточно быстро. Как правило, в пределах данного иерархического уровня образуются некоторые устойчивые структуры, из которых строятся более высокие иерархические уровни, характеризующиеся бо́льшими значениями максимально возможной энтропии, чем на предыдущем уровне. Это дает возможность непрерывному росту энтропии.

Обычно тенденция к возникновению хаоса реализуется в стремлении вещества к рассеянию (например, растворение сахара в воде). Но в случае сложных органических соединений бо́льший хаос (рассеяние энергии) может быть достигнут именно при концентрации вещества. Например, капельки масла, рассеянные в воде, стремятся слиться в одну большую каплю, в связи с тем что молекулы воды окутывают молекулы углеводорода масла своеобразной упорядоченной оболочкой. Чем больше поверхность масла, тем более упорядоченными оказываются молекулы воды, чего природа допустить не может, и в хаосе движения капель они обязательно рано или поздно примут состояние с наименьшей поверхностью, т. е. сольются в одну большую каплю.

Именно это, вероятно, послужило в свое время началом одноклеточной жизни. Именно так в растворе белковых молекул формируются коацерватные капли, имеющие стабильную и иногда достаточно сложную структуру и поглощающие из раствора строго определенные вещества.

В биосистемах стремление к хаосу реализуется в еще более сложных механизмах. Клетка может увеличить площадь своей поверхности, например приобрести форму эллипсоида, цилиндра (палочки) или нити, образовать корнеподобные выросты, ложноножки и т. п. Многоклеточные организмы решают подобную проблему аналогичным образом. У растений увеличивается поверхность листьев и корней. У животных в отличие от растений подобное увеличение поверхности осуществляется обычно внутри организма, чтобы не мешать движению. Достаточно вспомнить развитые поверхности кишечника, органов дыхания, кровеносной системы и т. п. Например, общая поверхность всех эритроцитов взрослого человека составляет около 3000 м 2 , общая длина всех капилляров – около 100 000 км и т. д.

Нечто аналогичное происходит и в рамках таких сверхорганизмов, как экосистемы. Здесь дифференциация достигается увеличением экологических ниш и разнообразия видов, населяющих данную экосистему, удлинением и усложнением пищевых цепей, совершенствованием внутривидовых и межвидовых отношений и т. п. Все это есть следствие принципа роста энтропии.

Таким образом, разрушение структуры, требуемое принципом роста энтропии, является необходимым компонентом жизненного процесса. Но жизнь научилась использовать разрушение во благо, поэтому разрушение не обязательно сопровождается гибелью биосистем. Умеренное разрушение, на которое накладываются определенные запрограммированные ранее ограничения, приводит к расширению и усложнению жизни. Наиболее характерно в этом отношении деление клетки. Здесь смерть и рождение слились в одном процессе.

Если движение вещества зачастую организуется в глобальный круговорот, захватывающий многие экосистемы биосферы, то движение энергии удобно рассматривать на примере какой-то одной экосистемы. Достаточно крупные экосистемы, такие как биогеоценозы, имеют все промежуточные уровни, которые проходит энергия при движении ее от состояния солнечного света до состояния теплоты, вначале утилизирующейся в буферных зонах биосферы (атмосфера, гидросфера, литосфера), а затем излучающейся в космическое пространство (в инфракрасной части электромагнитного спектра).

Вывод энтропии из организма есть непременное условие его существования. Все процессы жизнедеятельности сопровождаются ростом внутренней энтропии организма: ΔS > 0. Для того чтобы не погибнуть, клетка должна потребить из окружающей среды отрицательную энтропию (негэнтропию, информацию) ΔS < 0, что равносильно выводу энтропии из организма. Для этого обычно используется энергия химических реакций. Нужно взять из окружающей среды необходимые компоненты (пища) и создать условия для протекания реакции, продуктами которой должны стать вещества, содержащие в своей структуре больше энтропии, чем исходные компоненты. Обычно в этих реакциях разрушаются структуры более сложных молекул (например, молекул белка, жиров или углеводов). Затем эти продукты распада удаляются из организма. Себе же организм оставляет нечто, характеризующееся разницей энтропии исходных компонентов и энтропии продуктов реакции. Это нечто называется свободной энергией , которая по отношению к данному организму обладает отрицательной энтропией (негэнтропией) и за счет которой приводятся в движение внутренние упорядоченные процессы.

Например, глюкоза используется в организме, образуя диоксид углерода и воду. Это один из самых универсальных процессов, который лежит в основе дыхания и пищеварения. Диоксид углерода и вода удаляются из организма при дыхании, потовыделении, с экскрементами и т. п. Высвобожденная энергия претерпевает ряд превращений, обеспечивая тем самым протекание всех физиологических процессов, двигательных функций и т. п. Эту часть энергии рассматривают как траты на дыхание. Частично деградируя в каждом таком превращении, энергия постепенно полностью переходит в теплоту, которая после этого удаляется из организма в окружающую среду.

Однако не вся свободная энергия проходит через организм подобным путем. Часть свободной энергии используется на организацию ряда эндотермических реакций, т. е. связывается в сложных молекулярных структурах. В первую очередь это реакции синтеза необходимых белков, нуклеиновых кислот и т. п. В данном случае доля свободной энергии идет на упорядочение внутренней структуры организма. Эта энергия, накопленная в веществе организма, называется продукцией .

Некоторая доля пищи не усваивается организмом, следовательно, из нее не высвобождается энергия. Она выводится из организма вместе с экскрементами и впоследствии высвобождается из них уже другими организмами.

Ввиду наличия в своей структуре сложных молекулярных соединений данный организм может служить пищей для другого организма. При этом его структура подвергается механическому и химическому разрушению. Высвободившаяся свободная энергия используется так же, как в вышеописанном случае. Таким образом, формируется пищевая , или трофическая, цепь , в которой происходит перенос энергии через ряд организмов путем поедания одних организмов другими.

Энергетический баланс биосферы – соотношение между поглощаемой и излучаемой энергией. Определяется приходом энергии Солнца и космических лучей, которая усваивается растениями в ходе фотосинтеза, часть преобразуется в другие виды энергии и еще часть рассеивается в космическом пространстве.

Круговорот веществ в биосфере – повторяющиеся процессы превращений и пространственных перемещений веществ, имеющие определенное поступательное движение, выражающееся в качественных и количественных различиях отдельных циклов.

В современном понимании биосфера Земли представляет собой глобальную открытую систему со своим «входом» и «выходом». Ее вход это поток солнечной энергии, поступающей из космоса и химической энергии – из литосферы, вовлекаемое в биогенный круговорот вещество, наличная внутренняя информация и поток внешней информации. На выходе биосферы – рассеиваемая и излучаемая, преимущественно, тепловая энергия, уходящее из круговорота вещество, реорганизованная внутренняя информация и поток исходящей информации.

Поддержание жизнедеятельности организмов и круговорот веществ в экосистемах возможны только за счет постоянного притока солнечной энергии. Эта энергия в огромном количестве растрачивается на физические и химические процессы в атмосфере, гидросфере и литосфере: перемешивание воздушных потоков и водных масс, испарение, перераспределение веществ, растворение минералов, поглощение и выделение газов.

Только 1/2000000 часть солнечной энергии достигает поверхности Земли, при этом 1–2 % ее ассимилируется растениями.

На Земле существует единственный процесс, при котором энергия солнечного излучения не только тратится и перераспределяется, но и связывается, запасается на очень длительное время.

Этот процесс – создание органического вещества в ходе фотосинтеза. Сжигая в топках каменный уголь, мы освобождаем и используем солнечную энергию, запасенную растениями сотни миллионов лет назад.

Основная планетарная функция растений (аутотрофов) заключается в связывании и запасании солнечной энергии, которая затем расходуется на поддержание биохимических процессов в биосфере. Гетеротрофы получают энергию с пищей. Все живые существа являются объектами питания других, т.е. связаны между собой энергетическими отношениями. Пищевые связи в биоценозах являются механизмом передачи энергии от одного организма к другому. Организмы любого вида являются потенциальным источником энергии для другого вида. В каждом сообществе трофические связи образуют сложную сеть.

Энергетический баланс консументов складывается следующим образом. Поглощенная пища обычно усваивается не полностью. Процент усвояемости зависит от состава пищи и наличия пищеварительных ферментов организма. У животных ассимилируется в процессе обмена веществ от 12 до 75 % пищи. Неусвоенная часть пищи вновь возвращается во внешнюю среду (в виде экскрементов) и может быть вовлечена в другие цепи питания.

Большая часть энергии, полученной в результате расщепления пищевых веществ, расходуется на физиологические процессы в организме, меньшая часть – трансформируется в ткани самого организма, т.е. расходуется на рост, увеличение массы тела, откладывание запасных питательных веществ.

Передача энергии в химических реакциях в организме происходит, согласно второму закону термодинамики, с потерей части ее в виде тепла. Особенно велики эти потери при работе мышечных клеток животных, коэффициент полезного действия которых очень низок.

Траты на дыхание также во много раз больше энергетических затрат на увеличение массы организма. Конкретные соотношения зависят от стадии развития и физиологического состояния особей. У молодых особей траты на рост больше, тогда как зрелые особи используют энергию практически исключительно на поддержание обмена веществ и физиологических процессов.

Таким образом, большая часть энергии при переходе от одного звена пищевой цепи к другому теряется, т.к. другим, следующим, звеном может быть использована только энергия, заключенная в биомассе предыдущего звена. Подсчитано, что эти потери составляют около 90 %, т.е. только 10 % потребленной энергии аккумулируется в биомассе.

В соответствии с этим, запас энергии, накопленный в растительной биомассе, в цепях питания стремительно иссякает. Потерянная энергия может быть восполнена только за счет энергии Солнца. В связи с этим, в биосфере не может быть круговорота энергии, подобного круговороту веществ. Биосфера функционирует только за счет однонаправленного потока энергии, постоянного поступления ее извне в виде солнечного излучения.

Таким образом, поток энергии в биосфере разбивается на два основных русла, поступая к консументам через живые ткани растений или запасы мертвого органического вещества, источником которого также является фотосинтез.

Выше мы видели, что растения улавливают энергию Солнца в форме видимых лучей и переводят ее в резуль­тате фотосинтетических процессов в энергию химических связей, затем она переходит в теплоту и излучается через поверхность тела животных в мировое пространство в форме инфракрасных лучей. Получается поток энергии через биосферу. Как видно, с момента прихода в биосферу она испытывает целый ряд превращений. Этот процесс называется трансформацией энергии в биосфере. Энергия именно протекает через биосферу, а не совершает в ней круговорот. Вещество же в отличие от энергии совершает в биосфере непрерывный круговорот. Запомним этот важ­нейший момент. Только непрерывное поступление энер­гии Солнца на Землю обеспечивает нормальное функцио­нирование биосферы.

Авторы книги «Рассказы о биосфере» П. П. Второв и Н. Н. Дроздов иллюстрируют роль потока энергии в кру­говороте веществ очень простым и наглядным примером. Объясняя роль энергии и круговорота веществ в жизнен­ных процессах биосферы, они сравнивают их с водяным колесом и потоком воды. Колесо символизирует запасы вещества в биосфере: оно непрерывно крутится, оставаясь на месте и не изменяясь. То же самое происходит и с ве­ществом биосферы: не изменяясь количественно, оно на­ходится в состоянии непрерывного круговорота. Но колесо само по себе не будет вращаться, необходим постоянный поток воды. Вода, раз совершив работу, уходит и повторно не возвращается к колесу. Стоит прекратиться потоку во­ды - остановится и колесо. Поток энергии через биосферу играет точно такую же роль. Он «крутит колесо» кругово­рота веществ и обеспечивает тем самым существование и развитие биосферы. Стоит прекратиться потоку энергии - встанет и «колесо жизни» биосферы.

Количество поступающей энергии на разных широтах из-за шарообразности Земли неодинаково. Оно максималь­но в низких широтах и минимально в высоких. В субтро­пических и тропических поясах ежегодно поверхность Земли получает 220 ккал/см 2 , или 924 кДж/см 2 , тепла, а в полярных районах - около 70 ккал/см 2 , или 294 кДж/см 2 . Из этого количества только 0,5 % энергии запасается рас­тительностью суши в вице чистой первичной продукции. Вот эти-то 0,5 % аккумулированной энергии и обеспечи­вают существование жизни на Земле, в том числе и нас с вами. Растительный покров - это огромный аккумулятор, который бесперебойно снабжает все организмы, живущие на Земле, энергией. А каким образом передается эта энер­гия в биосфере, мы видели, когда рассматривали пищевые цепи. Выше уже было отмечено, что в природе не может быть слишком длинных пищевых цепей. Почему же? Ока­зывается, слишком длинные пищевые цепи невыгодны о энергетической точки зрения. Поскольку только 10 % энергии, полученной со съеденной пищей, используется по «прямому назначению», т. е. идет на синтез органических веществ в теле животного, то количество передаваемой энергии стремительно сокращается при переходе от низ­ших звеньев цепи к высшим:

Таким образом, животное, находящееся в конце цепи, включающей пять звеньев, получит только 0,0001 часть энергии, аккумулированной растениями, и для поддержа­ния его нормальной жизнедеятельности потребуется за­тратить громадное количество биомассы растений. Вот это и делает невозможным существование в природе экоси­стем с очень длинными пищевыми цепями.


Департамент образования Тверской области
ГОУ СПО «Лихославльское педагогическое училище»

Тема: Преобразование энергии в биосфере.
Круговорот веществ и потоков
энергии.

Подготовила: Поспелова И.Е.

г. Лихославль
2008 г.
Содержание.

Введение………………………………………………………… …………..3
1.Большой и малый круговороты веществ…………… ………………...…4
2. Круговорот веществ в экосистемах……………………… ……………...5
3. Роль организмов в круговороте веществ……………………… ………..8
4.Круговорот углерода в биосфере…………………………… ……………9
5. Круговорот азота в биосфере…………………………………… ………11
6.Круговорот фосфора в биосфере……………………………… ………...13
7.Поток энергии в биосфере…………………………………………...… ...16
Приложение…………………………………………………… ……….……19 Список литературы…………………………………………………… ..…...20

Введение.

Оболочка Земли, в пределах которой существует жизнь, называется биосферой.
Биосфера состоит из живого, или биотического, и неживого, или абиотического, компонентов. Биотический компонент – это вся совокупность живых организмов. Абиотический компонент – сочетание энергии, воды, определенных химических элементов и других неорганических условий, в которых существуют живые организмы.
Жизнь в биосфере зависит от потока энергии и круговорота веществ между биотическим и абиотическим компонентами. Круговороты веществ называются биогеохимическими циклами. Существование этих циклов обеспечивается энергией Солнца. Земля получает от Солнца около 1,3 ? 10 24 калорий в год. Около 40% этой энергии излучается обратно в космос; 15% поглощается атмосферой, почвой и водой; остальная энергия – это видимый свет, первичный источник энергии для всей жизни на Земле.
Фотосинтез, хемосинтез, дыхание и брожение – основные процессы, благодаря которым поток энергии проходит через организмы. Первые два процесса обеспечивают синтез органических веществ за счет энергии света (фотосинтез) и окисления неорганических веществ (хемосинтез). В ходе дыхания и брожения органические вещества расщепляются, а заключенная в них энергия используется живыми организмами, но в конечном итоге переходит в тепло.

Большой и малый круговороты веществ.

Академик В.Р. Вильямс писал, что единственный способ придать чему-то конечному свойства бесконечного – это заставить конечное вращаться по замкнутой кривой, т. е. вовлечь его в круговорот.
Все вещества на планете Земля находятся в процессе биохимического круговорота. Выделяют два основных круговорота: большой (геологический) и малый (биотический).
Большой круговорот длится миллионы лет. Горные породы разрушаются, выветриваются и потоками вод сносятся в Мировой океан, где образуют мощные морские напластования. Часть химических соединений растворяется в воде или потребляется биоценозом. Крупные медленные геоктонические изменения, процессы, связанные с опусканием материков и поднятием морского дна, перемещение морей и океанов в течение длительного времени приводят к тому, что эти напластования возвращаются на сушу и процесс начинается вновь.
Малый круговорот, являясь частью большого, происходит на уровне биогеоценоза и заключается в том, что питательные вещества почвы, воды, воздуха аккумулируются в растениях, расходуются на создание их массы и жизненные процессы в них. Продукты распада органического вещества под воздействием бактерий вновь разлагаются до минеральных компонентов, доступных растениям, и вовлекаются ими в поток вещества.
Возврат химических веществ из неорганической среды через среду с использованием солнечной энергии и химических реакций называется биохимическим циклом.

Круговорот веществ в экосистемах.

По Р. Риклефсу (1979) экосистему можно представить в виде пяти блоков (три активных, два добавочных), через которые проходят различные вещества (Приложение 1).
Три активных блока составляют обменный фонд элементов:

      живые организмы;
      мертвый органический детрит;
      доступные неорганические вещества.
    Два добавочных блока составляют резервный фонд элементов:
      косвенно доступные неорганические вещества;
      осаждающиеся органические вещества.
Между активными блоками идет быстрый обмен элементами. Обмен между добавочными блоками и остальной частью экосистемы замедлен. Например, углерод из косвенно доступных осадочных органических форм может превращаться при сгорании этой органической массы или при выветривании в доступный для растений углекислый газ.
Циркуляцию биогенных элементов в экосистеме называют биогеохимическим циклом. Этот термин был введен в обиход В.И. Вернадским.
Все биогеохимические циклы взаимосвязаны в природе и в совокупности формируют устойчивую структуру биосферы в целом. Замкнутость нормальных биогеохимических циклов неполная – и это очень важное свойство. Именно оно обусловило биогенное накопление кислорода и азота в атмосфере Земли, а также различных химических элементов и их соединений в литосфере. Вместе с тем доля вещества, выходящего из биосферного цикла (длительностью от десятков и сотен до нескольких тысяч лет), в геологический цикл (длительностью в миллионы лет), в год относительно невелика. Лишь громадное время истории развития биосферы (около 4 млрд. лет) позволило осуществить подобные биогенные накопления элементов в атмосфере и литосфере. Так, например, ежегодный сброс углерода из биогеохимического цикла наземных экосистем в геологический цикл (в отложениях) составляет около 130 т., т.е. всего лишь примерно 10 -8 % от современных запасов углерода, находящихся в биосферном обращении. В палеозое за счет неполной обратимости цикла углерода накопились мощные запасы отложений – известняки, уголь, нефть, битумы и пр., т.е. примерно за 600 млн. лет 10 16 – 10 17 т.
В каждом биогеохимическом цикле (т.е. для каждого отдельного элемента) можно выделить два фонда (обменный и резервный).
Резервный фонд – большая масса медленно движущихся веществ, содержащих данный элемент, в основном в составе абиотического компонента. Фонд размещен за пределами живых организмов во внешней среде.
Обменный (подвижный) фонд – меньший, но более активный. Для него характерен быстрый обмен между организмами и их непосредственным окружением.
Резервный фонд иногда называют недоступным, а обменный циркулирующий фонд – доступным, хотя между ними существует постоянный медленный обмен.
Среди биогеохимических циклов выделяют циклы двух типов: газообразных и осадочных веществ. Такое деление – проявление склонности химических элементов образовывать соединения того или иного типа в условиях Земли. Так, углерод, азот и кислород находятся в циклах преимущественно в виде летучих соединений, тогда как фосфор, железо и кальций сосредоточены в негазообразных веществах. Нарушения в циклах газообразных веществ могут быстро устраняться за счет наличия крупных атмосферных или океанических (либо тех и других) подвижных фондов. Циклы газообразных веществ с их громадными атмосферными фондами можно считать в глобальном масштабе «хорошо забуференными», так как их способность возвращаться к исходному состоянию велика.
Самоконтроль осадочных циклов затруднен – они легче нарушаются в результате местных пертурбаций, так как в этих циклах основная масса вещества сосредоточена в малоактивном резервном фонде. Явление «забуференности» здесь не выражено.
Циклы функционируют под действием биологических и геологических факторов (отсюда и их название). Существование биогеохимических циклов создает возможность для саморегуляции системы, что придает экосистеме устойчивость – постоянство состава (в %) различных элементов в ней (гомеостаз).
Механизмы, обеспечивающие восстановление равновесия в круговороте, возвращение элементов в круговорот, во многих случаях основаны на биологических процессах. Поэтому человек чаще всего не в силах поправить положение дел, если по его вине нарушено равновесие в цикле.
В связи с хозяйственной деятельностью человечества и вовлечением в биосферный поток техногенных продуктов этой деятельности возникли проблемы, обусловленные нарушением природных биогеохимических циклов. Циклы некоторых элементов (например, азота, серы, фосфора, калия, тяжелых металлов) превратились в настоящее время в природно-антропогенные, характеризующиеся значительной незамкнутостью. Некоторые же соединения и материалы, созданные человеком (например, многие пластмассы), вообще не способны включаться в природные и природно-антропогенные циклы, так как не перерабатываются в экосистемах, загрязняя их и являясь абсолютно чуждыми живому веществами.
Усилия по охране природы должны быть направлены в конечном счете на то, чтобы превратить ациклические (незамкнутые) процессы в циклические. Целью общества в этом направлении должно стать содействие «возвращению веществ в круговорот!» (Ю.Одум).

Роль организмов в круговороте веществ.

Круговорот углерода в биосфере.

Самый интенсивный биогеохимический цикл – круговорот углерода. В природе углерод существует в двух основных формах – в карбонатах (известняках) и углекислом газе.
Основная масса аккумулирована в карбонатах на дне океана (1016 т), в кристаллических породах (1016 т), каменном угле и нефти (1016 т) и участвует в большом цикле круговорота. Основное звено большого круговорота углерода – взаимосвязь процессов фотосинтеза и аэробного дыхания.
Другое звено большого цикла круговорота углерода представляет собой анаэробное дыхание (без доступа кислорода); различные виды анаэробных бактерий преобразуют органические соединения в метан и другие вещества (например, в болотных экосистемах, на свалках отходов).
В малом цикле круговорота участвует углерод, содержащийся в растительных тканях (около 1011 т) и тканях животных (около 109 т).
Как известно, органические вещества построены на основе атомов углерода. Именно специфические особенности углеродных атомов (способность образовывать простые и кратные связи, соединяться друг с другом в длинные цепи и различные по величине циклы и пр.) вывели углерод на первое место по значимости для жизни.
Круговорот углерода осуществляется благодаря четко отлаженному в ходе эволюции механизму функционирования двух фундаментальных процессов, о которых уже упоминалось – фотосинтез и клеточного дыхания.
Солнечная энергия в форме электромагнитного излучения используется биосферой при фотосинтезе. Последний представляет собой весьма сложный с химической точки зрения процесс, который могут осуществлять лишь те организмы, в клетках которых работают уникальные молекулы хлорофилла.
В процессе фотосинтеза электромагнитная энергия Солнца переходит в энергию химических связей органических соединений, прежде всего углеводов (СН 2 О) n .
Ежегодный прирост биомассы в результате фотосинтеза на планете составляет примерно 200 млрд. т.
Клеточное дыхание – противоположный фотосинтезу процесс, в котором происходит расщепление синтезированных из СО 2 и Н 2 О углеводов. Цель его – извлечь энергию из молекул углеводов (путем окисления), перевести ее в форму АТФ и далее использовать на различные энергетические нужды клетки. Выделяемый при фотосинтезе О 2 все организмы (и животные-гетеротрофы, и растения-автотрофы) используют для окисления (СН 2 О) n . Таким образом, и фотосинтез, и дыхание взаимосвязаны в едином потоке веществ в биосфере. Вещества (изначально это СО 2 , Н 2 О и О 2) могут совершать круговорот сколь угодно долго, вовлекаюсь попеременно то в фотосинтез, то в дыхание. С химической точки зрения, если вещества в этих круговоротах постоянно трансформируются, как бы обмениваясь атомами и перестраиваясь, то сами атомы элементов (например, углерода) никаких изменений не претерпевают.

    Круговорот азота в биосфере.

Цикл азота служит примером сложного, но одновременно самого идеального круговорота газообразных веществ, способного к быстрой саморегуляции.
Азот наиболее распространен на Земле в форме газообразного N 2 атмосферы. Он возникает в результате реакции окисления аммиака, образующегося при извержении вулканов и разложении биологических отходов: 4NH3 + 3O2 > 2N2 + 6H2O.
И хотя азот – важнейший компонент белков и нуклеиновых кислот (генетического материала живых организмов), растения не могут непосредственнее брать его из атмосферы. Они способны усваивать лишь связанный с кислородом или водородом азот, т.е. переведенный в другие химические формы – аммиак NH 3 , ионы аммония NH 4 + или нитрат-ионы
NO 3 - .
Вмешательство живых существ в круговорот азота подчинено строгой иерархии: только определённые категории организмов могут оказывать влияние на отдельные фазы этого цикла. Газообразный азот непрерывно поступает в атмосферу в результате работы некоторых бактерий, тогда как другие бактерии – фиксаторы (вместе с сине-зелёными водорослями) постоянно поглощают его, преобразуя в нитраты. Неорганическим путём нитраты образуются в атмосфере и в результате электрических разрядов во время гроз.
Самые активные потребители азота – бактерии на корневой системе растений семейства бобовых. Каждому виду этих растений присущи свои особые бактерии, которые превращают азот в нитраты. В процессе биологического цикла нитрат-ионы (NO 3 - ) и ионы аммония (NH 4 +), поглощаемы растениями из почвенной влаги, преобразуются в белки, нуклеиновые кислоты и т.д.
Процесс связывания атмосферного азота некоторыми свободноживущими (например, род Azotobakter) и симбиотическими (например, род Rhizobium) бактериями-азотфиксаторами называют биологической фиксацией азота. Каждый год таким путем на Землю переносится примерно 17,5 10 10 кг азота. Один квадратный метр поля, засеянного бобовыми (например, соей), обеспечивает фиксацию 10 – 30 г азота в год. Фермент нитрогеназа, «обслуживающая» у бактерий фиксацию N 2 , зависит в своей активности от присутствия микроэлемента молибдена.
Азот проходит по всей пищевой сети и в виде детрита (мертвого органического вещества) и мочевины (NH 2) 2 CO попадает в конечном итоге к редуцентам. Часть редуцентов способна переводить этот азот в ионы аммония, которые вновь используют растения.
Одним из важнейших процессов в цикле азота является восстановление нитрат-ионов до молекулярного азота, осуществляемое почвенными анаэробными бактериями – денитрификаторами (например, представителями рода Pseudomonas): 5[СН 2 О] + 4NO 3 - + 4H + > 2N 2 + 5CO 2 + 7H 2 O,где [СН 2 О] обозначает органические вещества. Эта реакция денитрификации, замыкающая цикл азота, показывает, как молекулярный азот возвращается в атмосферу. Денитрификация – главная причина потерь азота в земледелии, когда из вносимых человеком удобрений значительная часть (до половины!) связанного азота улетучивается.
    Круговорот фосфора в биосфере.
Цикл фосфора – пример более простого осадочного цикла с менее совершенной регуляцией. Два элемента (азот и фосфор) часто являются очень важными факторами в водных экосистемах, где они ограничивают и контролируют численность организмов.
Фосфор – один из основных компонентов живого вещества и входит в состав нуклеиновых кислот (ДНК и РНК), клеточных мембран, аденозинтрифосфата (АТФ) и аденозиндифосфата (АДФ), жиров, костей и зубов. Круговорот фосфора, как и других биогенных элементов, совершается по большому и малому циклам.
Главным резервуаром фосфора (в отличие от азота) служит не атмосфера, а горные породы прошлых геологических эпох. Запасы фосфора, доступные живым существам, полностью сосредоточены в литосфере. Основные источники неорганического фосфора – изверженные или осадочные породы. В земной коре содержание фосфора не превышает 1%. Из пород земной коры неорганический фосфор вовлекается в циркуляцию континентальными водами.
К растениям фосфор попадает главным образом в виде фосфатов. Соединения фосфора растворимы лишь в кислых растворах и в бескислородных средах и именно в таком виде пригодны для усвоения растениями. Он поглощается растениями, которые при его участии синтезируют различные органические соединения и таким образом включаются в трофические цепи. Затем органические фосфаты вместе с трупами, отходами и выделениями живых существ возвращаются в землю, где снова подвергаются воздействию микроорганизмов и превращаются в минеральные формы, употребляемые зелёными растениями.
В экосистему океана фосфор приносится текучими водами, что способствует развитию фитопланктона и живых организмов.
В наземных системах круговорот фосфора проходит в оптимальных естественных условиях с минимумом потерь. В океане дело обстоит иначе. Это связано с постоянным оседанием (седиментацией) органических веществ. Осевший на небольшой глубине органический фосфор возвращается в круговорот. Фосфаты, отложенные на больших морских глубинах, не участвуют в малом круговороте. Однако тектонические движения способствуют подъёму осадочных пород к поверхности.

Таким образом, фосфор медленно перемещается из фосфатных месторождений на суше и мелководных океанических осадков к живым организмам и обратно.
Незначительные количества фосфора возвращаются из воды на сушу благодаря рыболовству, а также с экскрементами морских птиц. (Раньше последний процесс играл солидную роль в цикле фосфора – залежи гуано на побережьях Южной Америки). Однако в целом поток фосфора идет в одном направлении - из наземных горных пород на дно моря.
Деятельность человека ведет к усиленной потере фосфора на суше, что делает его круговорот еще менее замкнутым. По данным известного американского эколога Дж. Хатчинсона, вылов морской рыбы (60000т ежегодно в пересчете на элементарный фосфор) не компенсирует в настоящее время смыва и выключения из круговорота того фосфора, который добывается человеком на удобрения (1 - 2 млн.т фосфорсодержащих пород в год).
Важность сбалансированного круговорота фосфора сильно возрастет в будущем, так как из всех макроэлементов Р – один из самых дефицитных (в доступных резервуарах на поверхности Земли). Поэтому во многих экосистемах Р выступает как лимитирующий (сдерживающий жизнь) фактор.
Фосфор заслуживает особо пристального внимания в связи с тем, что роль его в истории развития жизни на Земле трудно переоценить. Будучи относительно редким элементом (9 10 -2 % от массы всей земной коры), фосфор тем не менее лежит в основе уникальной системы снабжения живых организмов энергией. Для того чтобы на древней Земле затеплилась жизнь, потребовалась особая форма энергии, поддерживающая эту жизнь, - энергия фосфатных (или, как их называют иначе, фосфоангидридных) Р – О – Р – связей. Простейшим представителем таких «энергонесущих» молекул является пирофосфат.При гидролизе пирофосфата высвобождается энергия (более 29 кДж/моль), что значительно больше, чем если бы гидролизу подверглась любая другая молекула, не содержащая Р – О – Р –связей.
Для организмов роль главного источника энергии играет другое соединение, имеющее фосфоангидридные связи, - аденозинтрифосфорная кислота – АТФ.
Многие ферменты (белки-катализаторы биохимических реакций) используют энергию АТФ. С помощью АТФ клетка движется, вырабатывает теплоту, избавляется от отходов, синтезирует новые вещества и пр.
В молекуле АТФ есть две высокоэнергетические (макроэргические)
Р –О – Р –связей.
Разрыв их (например, при гидролизе) освобождает значительное количество энергии не менее 29 кДж/моль.
Рассматривая круговорот фосфора в масштабе биосферы за сравнительно короткий период, можно сделать вывод, что он полностью не замкнут. Запасы фосфора на земле малы. Поэтому считают, что фосфор – основной фактор, лимитирующий рост первичной продукции биосферы. Полагают даже, что фосфор – главный регулятор всех других биогеохимических циклов, это – наиболее слабое звено в жизненной цепи, которая обеспечивает существование человека.

Поток энергии в биосфере.

В противоположность веществу энергия не подчиняется закону цикличности. Для нормальной жизни и клетки, и отдельного организма, и экосистемы Солнце должно непрерывно поставлять на Землю новые и новые порции энергии.
Поток энергии в биосфере – процессы передачи и использования энергии в различных компонентах биосферы. Общее число живых организмов в каждом биоценозе, скорость их развития и воспроизводства зависят, в конечном счете, от количества энергии, поступающей в экосистему, от скорости ее движения через нее и, наконец, от интенсивности циркуляции веществ в ней. В отличие от циклического движения веществ, превращение энергии идет в одном направлении. Единственный источник энергии для биосферы – солнечный свет (лишь небольшие локальные экосистемы используют энергию химических реакций). Часть солнечной энергии (0,1 – 1,6 % от общего количества, достигающего поверхности Земли) преобразуется сообществами организмов и переходит на качественно более высокую ступень, трансформируюсь в органическое вещество, представляющее более концентрированную форму энергии, чем солнечный свет. Но большая часть энергии деградирует, проходит через систему и покидает ее в виде низкокачественной тепловой энергии (тепловой сток). Эффективность преобразования энергии в экосистемах отражается в пирамиде энергии, которая строится подсчетом количества энергии (в килокалориях – ккал), аккумулированной единицей поверхности за единицу времени и используемой организмами на каждом трофическом уровне. Только небольшая часть всей этой энергии остается в организмах и сохраняется в биомассе, остальная часть используется для удовлетворения метаболических потребностей живых существ.
Принципы организации пищевых цепей отражают действие двух законов термодинамики. Согласно первому закону термодинамики, приток энергии уравновешивается ее оттоком, и каждый перенос энергии сопровождается ее рассеиванием в форме, недоступной для использования тепловой энергии (при дыхании), как того требует второй закон.
Общее количество энергии, поступающее за единицу времени в экосистему, либо деградирует, либо экспортируется, либо накапливается. Сумма энергии, потерянной при дыхании, накопленной в экосистеме и ушедшей, равна энергии, зафиксированной в процессе фотосинтеза. Вместо одноканальной передачи энергии в пищевой цепи осуществляется двухканальная, когда поток энергии от продуцентов разделяется на детритную и пастбищную цепи. Пастбищная пищевая цепь представляет собой поток энергии, идущий от растений через консументы первого порядка (растительноядных животных). Не использованный консументами остаток чистой продукции пополняет собой мертвое органическое вещество. Оно состоит из фекалий, содержащих часть неусвоенной пищи, а также трупов животных, остатков растительности и называется детритом. Поток энергии, берущий начало от мертвого органического вещества и проходящий через систему разлагателей, называется детритной пищевой цепью. Так как это соответствует основной ярусной структуре экосистемы, прямое потребление живых растений и использование мертвого органического вещества обычно разделены в пространстве и времени, макроконсументы (фаготрофные животные) и микроконсументы (сапрофитные бактерии и грибы) сильно различаются отношениями интенсивности обмена к размерам, для их изучения требуются разные методы. Величины тех частей энергии чистой продукции, которые текут по двум путям, различны в экосистемах разного типа и часто варьируют по сезонам или по годам в одной и той же экосистеме. Во всех экосистемах пастбищная и детритная пищевые цепи взаимосвязаны, так что в ответ на энергетические воздействия извне в системе может быстро происходить переключение потоков.
и т.д.................